Development of a model of disturbance and recovery dynamics for marine benthic ecosystems

> Carolyn Lundquist, Simon Thrush, Judi Hewitt, Mark Pritchard

Funding

- MBIE Marine Futures (12-14)
- Ministry of Fisheries Biodiversity #ZBD200925 (09-12)
- MSI/FRST #C01X0501: Coasts & Oceans OBI (05+)
- FRST #C01X0212: FEERS Fishing Ecosystem Effects and Resource Sustainability (00-03)
- Ministry of Fisheries Aquatic Environments #BEN200701, BEN200601 (07-11, 06-09)
- Ministry of Fisheries Biodiversity #ZBD200701 "Oceans 2020 Chatham Challenger" (07-11)
- Department of Conservation (Tonga Island)
- NIWA Capability Fund (Separation Point)

Substrate destabilisers (*Echinocardium cordata*)

Predators and scavengers (*Coscinasterias* sp.)

Emergent epifauna (*Aitrina zelandic*a) Shell hash creators (*Macomona liliana*)

Cominella

adspersa

Mobile deposit feeders

Tube mat formers

Disturbance/Recovery Dynamics and Marine Spatial Management

- Benthic fishing methods disturb the seafloor. The question is: How much do we need to leave undisturbed and for what timeframe to maintain the benthic system
- Empirical measurements are expensive and time-consuming at scale of management of EEZ
- We need to develop a simple heuristic model that captures these dynamics to inform an ecosystem-based management approach [and validate it]

Glass half full?

We do understand a lot about seafloor community dynamics (growth rates, maturity rates, dispersal – at least within orders of magnitude)*

- We can apply value to loss of seafloor habitat via contributions to ecosystem function and services, and we do have some data to quantify services that particular species provide*
- Functions directly relevant to fisheries: habitat structure, productivity, resilience, maintenance of adaptive capacity via species richness

*Better information will be used refine model predictions, validate the model for particular habitats, and determine gaps in knowledge that are critical for model dynamics

Simple heuristic models moving from patch dynamics to landscapes

- Community-based `seascape' model originally developed for typical shallow, coastal benthic community archetypes
- Predict spatial and temporal scales of disturbance at which communities are able to respond and persist

Model V1 Summary

- 100 by 100 cell grid (10,000 cells)
- Simplistic representation of community successional dynamic
- 3 archetypal communities based on time to mature successional stage (2, 6, 15 years)
- Each successional stage represented by discrete period of time

Varying spatial extent and temporal frequency of random disturbance events within the landscape (1100 total scenarios)

100 time steps

Model v1.1 and v1.2

Restricted set of spatial and temporal disturbance regimes over which communities can persist.
Dispersal/colonisation reduces the disturbance regime over which communities can persist.
Temporal ≠ spatial scales

Lundquist CJ; Thrush SF; Coco G; Hewitt JE (2010) Interactions between disturbance and dispersal decrease persistence thresholds of a marine benthic community. *Marine Ecology Progress Series* 413: 217-228
 Thrush SF; Lundquist CJ; Hewitt JE (2005) Spatial and temporal scales of disturbance to the seafloor: a generalized framework for active habitat management. *American Fisheries Society Symposium* 41: 639-649.

Model v1.1 and v1.2

- Martin Cryer, New Zealand continental slope, 2100 km², 20% of slope per year
- New England, 56% of region trawled per year
- Northern California, 1.5-3 times per year

Lundquist CJ; Thrush SF; Coco G; Hewitt JE (2010) Interactions between disturbance and dispersal decrease persistence thresholds of a marine benthic community. *Marine Ecology Progress Series* 413: 217-228 Thrush SF; Lundquist CJ; Hewitt JE (2005) Spatial and temporal scales of disturbance to the seafloor: a generalized framework for active habitat management. *American Fisheries Society Symposium* 41: 639-649.

Current Model (ZBD200925)

8 interacting functional groups characterised by:

- Age of maturity
- Age of mortality
- Seasonality of reproduction
- Dispersal properties
- Dependence on hard substrate for settlement
- Adult-juvenile interaction matrix that allow presence/absence of each group to impact colonisation/recovery potential after disturbance

2 - opportunistic

4

7 – deep burrow

Expert workshop = Conceptual Functional Groups

	Conceptual Functional Group	Typical taxa
1	Opportunistic early colonists – limited substrate disturbance	Sedentary species like capitellid and spionid polychaetes
2	Opportunistic early colonists – considerable substrate disturbance	Mobile deposit feeders and small scavengers, phoxocephalid amphipods and other small crustaceans
3	Substrate stabilisers (Tube mat formers)	Tube mat forming polychaetes (spionids, terebellids, chaetopterids); Amphipods
4	Substrate destabilisers	Spatangoid echinoids (<i>Echinocardium</i> sp.), holothurians, <i>Amphiura</i> sp., gastropods
5	Shell hash-creating species	Bivalves, gastropods
6	Late colonisers – emergent epifauna	Sponges, bryozoans, sea pens, sea whips, ascidians, gorgonians – primarily sedentary suspension feeders
7	Late colonisers – burrowers	Shrimps, crabs, large polychaetes
8	Predators and scavengers	Predatory starfish, brittlestars, crabs, gastropods, hermit crabs, worms – mostly large-bodied

Model flow chart Initialisation state (100 time steps) Time Step Loop Disturbance Available Colonists Proximity of colonist source Available space Density of colonist source Functional group dispersal ability Settlement Adult-juvenile interaction matrix (facilitation or inhibitation of colonisation) Growth Functional group life history Mortality

Defining parameters for Conceptual Functional Groups

	Conceptual Functional Group	Juvenile Max Age (# of seasons)	Adult Max Age (# of seasons)	Reprod. seasons	Dispersal length (# cells)
1	Opportunistic – limited disturbance	1	6	123	10
2	Opportunistic – considerable disturbance	1	6	123	10
3	Substrate stabilisers (Tube mat formers)	2	12	12	5
4	Substrate destabilisers	4	20	2	5
5	Shell hash-creating species	4	60	12	5
6	Late colonisers – emergent epifauna	8	200	2	1
7	Late colonisers – burrowers	6	20	2	5
8	Predators and scavengers	6	20	1234	5

Adult-Juvenile Interaction Matrix

	Functional Group	1	2	3	4	5	6	7	8
1	Opportunistic early colonists – limited substrate disturbance	0	0	-1	0	-1	0	0	0
2	Opportunistic early colonists – considerable substrate disturbance	-1	-1	-1	-1	-1	-1	-1	-1
3	Substrate stabilisers (Tube mat formers)	1	1	1	1	1	1	0	0
4	Substrate destabilisers	-1	0	-1	0	-1	-1	-1	-1
5	Shell hash-creating species	-1	-1	1	1	1	1	0	1
6	Late colonisers – emergent epifauna	0	0	0	1	0	1	0	1
7	Late colonisers – burrowers	0	0	-1	-1	-1	-1	-1	-1
8	Predators and scavengers	-1	-1	-1	-1	-1	-1	-1	-1

Model simulations

20 x 20 disturbance between timesteps 25 & 63 equating to approximately **10 % of landscape** disturbed per year (4 time steps/yr) 10 x 10 disturbance between timesteps 25 & 63 equating to approximately **2 % of landscape** disturbed per year (4 time steps/yr)

FG8(1,2,3)

FG7(1,2,3,5,8)

FG6

FG5(4)

FG4

FG2

FG1

-FG3(1,2)

Model simulations

20 x 20 disturbance between timesteps 25 & 63 equating to approximately **10 % of landscape** disturbed per year (4 time steps/yr) 10 x 10 disturbance between timesteps 25 & 63 equating to approximately **2 % of landscape** disturbed per year (4 time steps/yr)

Proportion occupied

FG1	
FG2	
FG3	
FG4	
FG5	
FG6	
FG7	12
FG8	-

Proportion mature

FG1	
FG2	
FG3	
FG4	6
FG5	
FG6	
FG7	12
FG8	

Proportion colonised

Change in f-groups with increasing rate of disturbance

sp8

Model predictions match our conceptual idea of what is going on, with main drivers of age of functional groups and interaction matrix. But – is it relevant to real communities?

- Analyse real datasets (inshore & offshore)
- Determine functional traits for all species in observed datasets
- Convert species abundance data to functional groups via functional trait 'fuzzy' logic

Ordination of model landscape along disturbance gradient -

Inshore and Offshore Datasets

Spirits Bay

Tasman & Golden Bays

Hamilton

Challenger Plateau

Chatham Rise

Google Earth

Chatham/Challenger OS2020 dataset

Traits used to derive conceptual functional groups Based on BTA, Bremner, Rodgers and Frid 2003

	Conceptual Functional Group	Traits used
1	Opportunistic early colonists – limited substrate disturbance	Sedentary; Short-lived; Deposit feeder
2	Opportunistic early colonists – considerable substrate disturbance	Limited or high mobility; Short-lived; Small-bodied; Deposit feeder
3	Substrate stabilisers (Tube mats)	Crustacean or Polychaete; Erect structure; Intermediate or Long- lived
4	Substrate destabilisers	High mobility; Deposit feeder; Surface dweller; Intermediate-lived
5	Shell hash-creating species	All bivalve and gastropod species
6	Late colonisers – emergent epifauna	Surface dwelling; Long lived; Suspension feeders
7	Late colonisers – burrowers	Not surface dwelling; not sedentary
8	Predators and scavengers	Predator/scavenger; Large bodied; Highly mobile

Chatham Rise and Challenger Plateau: total number of taxa across conceptual functional groups – DTIS video

Chatham Rise and Challenger Plateau: total number of taxa across conceptual functional groups – benthic sled

Disturbance rates – Chatham/Challenger

Disturbance rates – Model

Marine Futures

- Disturbance
 thresholds
- Benthic community resilience
- Disturbance intensity
- Indicators and warning signs for threshold shifts

Lundquist CJ; Thrush SF; Coco G; Hewitt JE (2010) Interactions between disturbance and dispersal decrease persistence thresholds of a marine benthic community. *Marine Ecology Progress Series* 413: 217-228

(Exploratory) tool for regional management and policy

Considering effort in high impact areas against ecosystem function and biodiversity

Management of region is spatially explicit

Predicting effects across gradients

Effects thresholds

Restoration potential

After Cryer et al. 2002 Ecological Applications)

Thank you!

